Problem 26. Show that the polar decomposition is unique: If $T \in B(H)$ can be written as T = UP with $P \ge 0$ and a partial isometry U such that ker $U = \ker P$, then $P = (T^*T)^{1/2}$ and U are uniquely determined.

Problem 27. Let $T \in B(H)$. Show that T is invertible if and only if T^*T and TT^* are bounded from below.

Problem 28. Let $P, Q \in B(H)$ be orthogonal projections and denote $U = \operatorname{ran} P, V = \operatorname{ran} Q$. Recall that $P \wedge Q :=$ projection onto $U \cap V$ and $P \vee Q :=$ projection onto $\overline{U+V}$. Show the following:

- (i) PQ = QP implies $P \wedge Q = PQ$ and $P \vee Q = P + Q PQ$,
- (ii) $P \leq Q$ if and only if PQ = QP = P if and only if ran $P \subseteq \operatorname{ran} Q$,
- (iii) PQ = 0 if and only if $P \lor Q = P + Q$.

Problem 29. Let *E* be a spectral measure on (Ω, \mathfrak{M}) , $B(\Omega, \mathfrak{M})$ be the Banach space of bounded \mathfrak{M} -measurable functions on Ω and B_s denote the subspace of simple functions in $B(\Omega, \mathfrak{M})$. Hence, any $f \in B_s$ can be written in the form

$$f = \sum_{r=1}^{n} c_r \chi_{M_r},$$

where $c_1, \ldots, c_n \in \mathbb{C}$ and M_1, \ldots, M_n are pairwise disjoint sets in \mathfrak{M} . For such a function we write

$$\mathbb{I}(f) = \sum_{r=1}^{n} c_r E(M_r).$$

For $f, g \in B(\Omega, \mathfrak{M}), \alpha, \beta \in \mathbb{C}$ and $x, y \in H$, show the following:

- (i) $\mathbb{I}(f)$ is well-defined,
- (ii) $\mathbb{I}(\overline{f}) = \mathbb{I}(f)^*$ $\mathbb{I}(\alpha f + \beta g) = \alpha \mathbb{I}(f) + \beta \mathbb{I}(g)$ $\mathbb{I}(fg) = \mathbb{I}(f)\mathbb{I}(g),$
- (iii) $\langle \mathbb{I}(f)x, y \rangle = \int_{\Omega} f(t) d\langle E(t)x, y \rangle,$
- (iv) $||\mathbb{I}(f)x||^2 = \int_{\Omega} |f(t)|^2 d\langle E(t)x, x \rangle$,
- (v) Let $f_n \in B(\Omega, \mathfrak{M})$ for $n \in \mathbb{N}$. If $f_n(t) \to f(t)$ *E*-a.e. on Ω and $\sup_n ||f_n||_{\infty} < \infty$, then SOT- $\lim_{n\to\infty} \mathbb{I}(f_n) = \mathbb{I}(f)$.